Minimising the delta test for variable selection in regression problems

نویسندگان

  • Alberto Guillén
  • Dusan Sovilj
  • Amaury Lendasse
  • Fernando Mateo
  • Ignacio Rojas
چکیده

The problem of selecting an adequate set of variables from a given data set of a sampled function, becomes crucial by the time of designing the model that will approximate it. Several approaches have been presented in the literature although recent studies showed how the Delta Test is a powerful tool to determine if a subset of variables is correct. This paper presents new methodologies based on the Delta Test such as Tabu Search, Genetic Algorithms and the hybridization of them, to determine a subset of variables which is representative of a function. The paper considers as well the scaling problem where a relevance value is assigned to each variable. The new algorithms were adapted to be run in parallel architectures so better performances could be obtained in a small amount of time, presenting great robustness and scalability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multistart Strategy Using Delta Test for Variable Selection

Proper selection of variables is necessary when dealing with large number of input dimensions in regression problems. In the paper, we investigate the behaviour of landscape that is formed when using Delta test as the optimization criterion. We show that simple and greedy Forward-backward selection procedure with multiple restarts gives optimal results for data sets with large number of samples...

متن کامل

A variable selection approach based on the Delta Test for Extreme Learning Machine models

Extreme Learning Machine, ELM, is a newly available learning algorithm for single layer feedforward neural networks (SLFNs), and it has proved to show the best compromise between learning speed and accuracy of the estimations. In this paper, a methodology based on Optimal-Pruned ELM (OP-ELM) for function approximation enhanced with variable selection using the Delta Test is introduced. The leas...

متن کامل

New Methodologies Based on Delta Test for Variable Selection in Regression Problems

The problem of selecting an adequate set of variables from a given data set of a sampled function, becomes crucial by the time of designing the model that will approximate it. Several approaches have been presented in the literature although recent studies showed how the Delta Test is a powerful tool to determine if a subset of variables is correct. This paper presents new methodologies based o...

متن کامل

Using the Delta Test for Variable Selection

Input selection is an important consideration in all large-scale modelling problems. We propose that using an established noise variance estimator known as the Delta test as the target to minimise can provide an effective input selection methodology. Theoretical justifications and experimental results are presented.

متن کامل

An Overview of the New Feature Selection Methods in Finite Mixture of Regression Models

Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJHPSA

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2008